FGF-2 Potentiates Ca-Dependent Inactivation of NMDA Receptor Currents in Hippocampal Neurons
نویسندگان
چکیده
Boxer, Adam L., Herman Moreno, Bernardo Rudy, and Edward B. Ziff. FGF-2 potentiates Ca-dependent inactivation of NMDA receptor currents in hippocampal neurons. J. Neurophysiol. 82: 3367–3377, 1999. Peptide growth factors such as the neurotrophins and fibroblast growth factors have potent effects on synaptic transmission, development, and cell survival. We report that chronic (hours) treatment with basic fibroblast growth factor (FGF-2) potentiates Ca-dependent N-methyl-D-aspartate (NMDA) receptor inactivation in cultured hippocampal neurons. This effect is specific for the NMDA-subtype of ionotropic glutamate receptor and FGF-2. The potentiated inactivation requires ongoing protein synthesis during growth factor treatment and the activity of protein phosphatase 2B (PP2B or calcineurin) during agonist application. These results suggest a mechanism by which FGF-2 receptor signaling may regulate neuronal survival and synaptic plasticity.
منابع مشابه
FGF-2 potentiates Ca(2+)-dependent inactivation of NMDA receptor currents in hippocampal neurons.
Peptide growth factors such as the neurotrophins and fibroblast growth factors have potent effects on synaptic transmission, development, and cell survival. We report that chronic (hours) treatment with basic fibroblast growth factor (FGF-2) potentiates Ca(2+)-dependent N-methyl-D-aspartate (NMDA) receptor inactivation in cultured hippocampal neurons. This effect is specific for the NMDA-subtyp...
متن کاملIn CA1 pyramidal neurons of the hippocampus protein kinase C regulates calcium-dependent inactivation of NMDA receptors.
The NMDA subtype of the glutamate-gated channel exhibits a high permeability to Ca(2+). The influx of Ca(2+) through NMDA channels is limited by a rapid and Ca(2+)/calmodulin (CaM)-dependent inactivation that results from a competitive displacement of cytoskeleton-binding proteins from the NR1 subunit of the receptor by Ca(2+)/CaM (Zhang et al., 1998; Krupp et al., 1999). The C terminal of this...
متن کاملNMDA-Dependent modulation of hippocampal kainate receptors by calcineurin and Ca(2+)/calmodulin-dependent protein kinase.
Neurotransmitter receptor function can be influenced by the phosphorylation state of the receptor or of associated proteins. Here we show that kainate receptors expressed in cultured hippocampal neurons can be modulated by Ca(2+)/calmodulin-dependent phosphatase (calcineurin) and Ca(2+)/calmodulin-dependent kinase (CaMK). Ca(2+) influx through NMDA receptor or voltage-sensitive calcium channels...
متن کاملInhibition of NMDA-induced outward currents by interleukin-1beta in hippocampal neurons.
There is increasing evidence that a functional interaction exists between interleukin-1beta (IL-1beta) and N-methyl-D-aspartate (NMDA) receptors. The present study attempted to elucidate the effect of IL-1beta on the NMDA-induced outward currents in mechanically dissociated hippocampal neurons using a perforated patch recording technique. IL-1beta (30-100 ng/ml) inhibited the mean amplitude of ...
متن کاملCalcium-dependent inactivation of the monosynaptic NMDA EPSCs in rat hippocampal neurons in culture.
The effects of increased dendritic calcium concentration ([Ca2+]i) induced by single action potentials on monosynaptic glutamatergic excitatory postsynaptic currents (EPSCs) were studied in cultured rat hippocampal neurons. To investigate the respective roles of pre- and postsynaptic elements in the depolarization-induced NMDAR inactivation, we have performed simultaneous paired whole-cell reco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999